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Abstract

Machine learning applications often involve
data that can be analyzed as unit vectors
on a d-dimensional hypersphere, or equiva-
lently are directional in nature. Spectral clus-
tering techniques generate embeddings that
constitute an example of directional data
and can result in different shapes on a hy-
persphere (depending on the original struc-
ture). Other examples of directional data
include text and some sub-domains of bio-
informatics. The Watson distribution for di-
rectional data presents a tractable form and
has more modeling capability than the sim-
ple von Mises-Fisher distribution. In this pa-
per, we present a generative model of mix-
tures of Watson distributions on a hyper-
sphere and derive numerical approximations
of the parameters in an Expectation Maxi-
mization (EM) setting. This model also al-
lows us to present an explanation for choosing
the right embedding dimension for spectral
clustering. We analyze the algorithm on a
generated example and demonstrate its supe-
riority over the existing algorithms through
results on real datasets.

1 Introduction

Spectral Methods have long gained popularity in ar-
eas like clustering and computer vision applications.
These methods employ eigenvectors of a sample affin-
ity matrix to form a low-dimensional normalized em-
bedding and use K-means in post-processing steps.
There have been tremendous advances in theoretical
foundations behind such methods and different frame-
works have been proposed to explain their success.

Most of these attempts pose spectral methods as a re-
laxation of concrete problems (e.g. Markov random

walks [1]). One approach [2] attempts to explain the
apparently trivial clustering in embedding space as a
phenomenon of decrease in the angles between similar
vectors in this new space. Specifically, truncating the
dimensionality of the embedding enhances the struc-
ture in the data, and consequently any further analysis
in this representation is more likely to be fruitful.

The authors of [2] also present a brief analysis of
such embeddings as directional data on d-dimensional
hyperspheres. Directional statistics is primarily con-
cerned with unit vectors or equivalently vectors resid-
ing on the surface of a hypersphere of unit radius. The
techniques employed therein are very different from
usual statistics, and it is this concern that warrants
analysis of embeddings as points on a hypersphere.
Datasets where standard Mahalanobis type distances
are not very effective are more likely to be explained as
instances of directional distributions and can be said to
possess “directional” properties. Such data exists com-
monly in domains like bio-informatics and text mining.

More recently, [3] proposed a clustering technique for
directional data based on the von-Mises-Fisher (vMF)
distribution [4], pitched it against k-means type algo-
rithms [5] and demonstrated the need and efficacy of
specific modeling of directional data in machine learn-
ing context. The von-Mises-Fisher distribution is anal-
ogous to the Gaussian distribution for spherical data,
and its form is convenient to work with, albeit with
modeling limitations. In [3], the authors present an
EM algorithm for mixtures of von-Mises-Fisher distri-
butions and numerical approximations for the param-
eters involved.

However, the limited modeling capability limits accu-
racy on noisy, thinly spread clusters since von-Mises-
Fisher distribution inherently models only circular or
tight clusters. Moreover, spectral embeddings can re-
sult in noisy formations in the embedding space, and
hence vMF type distributions can not be expected to
perform well. In this paper, we first present our intu-
ition about spectral methods, analyze embeddings on



hyperspheres and attempt to correlate known results
with our findings. We build upon the above described
work to develop an EM-algorithm for mixtures of Wat-
son distributions on hyperspheres and derive fast nu-
merical approximations for the parameters. We go on
to demonstrate that our method allows for increased
modeling flexibility for spectral embeddings and di-
rectional data in general. We test our models on gen-
erated and real world datasets and demonstrate the
efficacy of our approach over the soft-moVMF algo-
rithm [3]. We also discuss the issue of choosing the
right embedding dimension from a Watson distribu-
tion perspective. In the next section, we present our
intuition on spectral embeddings and how directional
distributions are relevant. We present a generative
model based on the Watson distribution and present
experimental evidence for the same.

2 Spherical Distributions and
Embeddings

2.1 Watson Distribution

A unit vector x of dimension-d is said to have the
multivariate Watson distribution if its probability
density function is given as

f(±x|µ, κ) = M(
1
2
,
d

2
, κ)−1eκ(µT x)2 (1)

where M( 1
2 , d

2 , κ) is the confluent hyper-geometric
function also known as Kummer function (see [6] for
more details). There also exists an extensive Matlab
library [7] for computing special functions associated
with spherical distributions.

The distribution is rotationally symmetric about µ,
which is also a unit vector. As κ, the concentration
parameter, increases the distribution tends to get
more spread out around µ. For κ < 0, the distri-
butions tends to be a girdle around the hypersphere
(for e.g. figure 1(b)). This varied range of the con-
centration parameter allows for a lot of flexibility in
modeling different kinds of embeddings. In contrast,
the von-Mises-Fisher distribution given as

f(x|µ, κ) =
κd/2−1

(2π)d/2Id/2−1(κ)
eκµT x (2)

only allows for κ ≥ 0, here Id/2−1(κ) is the modi-
fied Bessel function of first kind and order d/2 − 1.
Moreover the iso-density lines of the distribution are
circles. Equivalently points with the same density lie
on a circle. This is a far cry from the noise in real
world datasets and especially embeddings because of
the inadequacy of the Euclidean distance used for es-

timating the embeddings (see [4] for more details on
these distributions).

2.2 Embeddings

Given a sample of points S = {x1, ..., xn} in <l and
an affinity matrix W ∈ <n×n defined by

Wij = e‖xi−xj‖2/2σ2
(3)

and the corresponding Laplacian

L = D−1/2WD−1/2 (4)

where D is a diagonal matrix and where the (i, i) ele-
ment is the sum of the ith row of W .

Let us consider a matrix V whose columns are the d
largest eigenvectors (corresponding to d largest eigen-
values) {v1, ..., vd}. The spectral embedding for a
point xi in the sample is then a vector ui ∈ <d

corresponding to the ith row of the matrix V , such
that ‖ ui ‖= 1. Figure 1 displays embeddings de-
rived from generated data and a subsample of USPS
digits dataset. It is clear that a model has to be flexi-
ble enough to consider girdle type and standard direc-
tional data.

(a) (b)

(c)

Figure 1: Spectral Embeddings

In [8], the authors prove a proposition stating that if
the off-diagonal blocks of the affinity matrix are zero,
then on this hypersphere the points cluster around mu-
tually orthogonal points. For this simple case, mod-
eling the embedding is trivial since the concentration
parameter κ is going to be very large and a standard
von-Mises-Fisher model would suffice. However, in a
realistic case, the non-diagonal blocks are going to be



non-zero and, as is intuitive, the concentration around
the cluster means is going to decrease as can be seen
in figure 1(c).

The Watson distribution not only allows for modeling
flexibility, but, regardless of the dimensionality of the
data, only two parameters, the κ and the mean µ,
need to be estimated. Another problem with spectral
methods is choosing the right number of eigenvectors,
as a small embedding dimension might not capture
the structure in the data appropriately, and a large
dimension might obscure any structure. We present
an explanation for this problem based on our model.

In the next section, we extend the work in [3], derive
a clustering algorithm based on posterior probabili-
ties output by our hybrid-EM for mixtures of Watson
distribution and conduct experiments on real world
datasets.

3 Mixture of Watson Distributions

Consider a generative model for directional data as a
mixture of K Watson distributions. Let fj(x|φj) be
one Watson component for a class corresponding to
the parameters φj = (µj , κj) and 1 ≤ j ≤ K. The
density for a point generated by this model is then
given by

f(x|Φ) =
K∑

j=1

αjfj(x|φj) (5)

where Φ = (α1, ..., αK , φ1, ..., φK) and αj are the mix-
ing proportions that sum to one.

Following the standard EM technique [9], the E-step
in the EM computes the expectation of the complete
likelihood over the distribution of the hidden variables,
and the M-step computes the parameters Φ which
maximize this expectation. The expectation is given
as

E[log(P (X, Y |Φ))] =
K∑

j=1

n∑
i=1

log(αj)p(j|xi,Φ) +

K∑
j=1

n∑
i=1

log(fj(xi|φj))p(j|xi,Φ) (6)

where p(j|xi,Φ) is the posterior distribution of the hid-
den variable. This expression contains two unrelated
terms and can be separately maximized. Allowing for
the

∑K
j=1 αj = 1 constraint, we get [9]

αj =
1
n

n∑
i=1

p(j|xi,Φ) (7)

To maximize the second term, we have to form the
Lagrangian with respect to the constraint µT

j µj = 1

and, as discussed before, unlike the EM for von-Mises-
Fisher distribution, there is no positivity constraint on
κj . We now have

L =
K∑

j=1

n∑
i=1

log(fj(xi|φj))p(j|xi,Φ) +

K∑
j=1

λj(1− µT
j µj) = (8)

K∑
j=1

n∑
i=1

(κj(xT
i µj)2 − log(M(κj)))p(j|xi,Φ) +

K∑
j=1

λj(1− µT
j µj) (9)

where M(κj) = M( 1
2 , d

2 , κj) for convenience of nota-
tion.

To obtain the update equations for each (µj , κj), we
set each partial derivative of L to zero.

1) Differentiating w.r.t each λj

µT
j µj = 1 (10)

2) Differentiating w.r.t each µj

n∑
i=1

κj(xT
i µj)xip(j|xi,Φ) = λjµj (11)

3) Differentiating w.r.t each κj

n∑
i=1

(xT
i µj)2p(j|xi,Φ) =

M
′
(κj)

M(κj)

n∑
i=1

p(j|xi,Φ) (12)

Since ‖ µj ‖= 1, from equation 12 and 13 we have

κj ‖
n∑

i=1

(xT
i µj)xip(j|xi,Φ) ‖= λj (13)

substituting back in equation 13, we get

µj =
∑n

i=1(x
T
i µj)xip(j|xi,Φ)

‖
∑n

i=1(x
T
i µj)xip(j|xi,Φ) ‖

(14)

3.1 Approximating κ

Equation 12 presents a highly nonlinear equation that
can perhaps be solved by Newton’s method, though
at a huge computational cost. Moreover, the accuracy
of the computation of the Kummer function can also
significantly alter results. The Kummer function, how-
ever, has properties that we employ to derive an ap-
proximation. It can be verified [10] that for the Kum-
mer function there exists a continued fraction for the



ratio of the derivative of the function to the function
itself

κM
′
(κj)

M(κj)
=

(1/2)κ

(d/2)− κ + (1/2+1)κ
(d/2+1)−κ + .......

(15)

Thus, if

T =
M

′
(κj)

M(κj)
=

∑n
i=1(x

T
i µj)2p(j|xi,Φ)∑n

i=1 p(j|xi,Φ)
(16)

from equation 12, then the above equation can be ap-
proximately expressed as

Tκ ≈ (1/2)κ
(d/2)− κ + Tκ

(17)

Solving this linear equation in κ gives us the following
approximation

κ ≈ 1
2
(
1− Td

T 2 − T
) (18)

We add a empirically determined compensating term
to improve the numerical accuracy and the final ap-
proximation becomes

κ ≈ 1
2
(
1− Td

T 2 − T
) +

−T 2

d(T 2 − T )
(19)

Our approximation works regardless of the dimension-
ality of the data and outperforms the approximations
given in [4], which are mostly for d close to 3. A simi-
lar approach was also employed in [3] and was shown
to lead to better results. Moreover our approximation
also allows κ to take on negative values when the data
is thinly spread on the hypersphere, and this prop-
erty leads to better noise handling, as we demonstrate
later.

From these equations, we get the EM algorithm for a
mixture of Watson distributions:
E-step: Compute for all points xi and mixture com-
ponents 1 ≤ j ≤ K

1. fj(xi|φj) = M( 1
2 , d

2 , κj)−1eκj(µ
T
j xi)

2

2. p(j|xi,Φ) = αjfj(xi|φj)∑K
h=1 αhfh(xi|φj)

M-step: Update αj , µj and κj for all mixture
components

αj = 1
n

∑n
i=1 p(j|xi,Φ)

Solve the following non-linear equation for µj

µj −
∑n

i=1(x
T
i µj)xip(j|xi,Φ)

‖
∑n

i=1(x
T
i µj)xip(j|xi,Φ) ‖

= 0 (20)

Compute T using µj

T =
∑n

i=1(x
T
i µj)2p(j|xi,Φ)∑n

i=1 p(j|xi,Φ)

=
∑n

i=1(x
T
i µj)2p(j|xi,Φ)

nαj
(21)

κj =
1
2
(
1− Td

T 2 − T
) +

−T 2

d(T 2 − T )
(22)

The E-step returns the posterior probabilities
p(j|xi,Φ) of all the classes, given the point, and are
employed in all our experiments. There does not ap-
pear to be a closed form solution for µj , which can be
solved by Newton’s method using a standard optimiza-
tion package. However, the bulk of the computational
bottleneck for the procedure is taken care of by the κ
approximation.

4 Embedding Dimension

The problem of choosing the right embedding dimen-
sion or equivalently the number of eigenvectors of the
affinity matrix in spectral clustering is nontrivial, since
a too large or too small dimension can obscure the clus-
ter formation in the data. It turns out that the form of
the Watson distribution provides us with some expla-
nation of how to choose the ideal embedding dimen-
sion.

From an EM perspective, we seek the dimension d
that maximizes L from equation, specifically the term∑n

i=1(x
T
i µj)2. It is clear that the dimension that

maximizes this term will also maximize the expected
log-likelihood. For clarity we assume only one cluster
with mean µ. The expression

D =
n∑

i=1

(xT
i µ)2 (23)

measures the tightness of the cluster on the hyper-
sphere; the larger D is higher is, the higher the
concentration around the mean. It is equivalent to

D = µT Sµ =< Sµ, µ > (24)

where S = 1
n

∑n
i=1 xix

T
i is the scatter matrix and mea-

sures the dispersion about the origin. S is symmetric,
and it is well known [11] that, subject to constraint
µT µ = 1, D has the maximum value, which is equal to
the magnitude of the largest eigenvalue λ(S).

λ(S) = max < Sµ, µ > s.t. µT µ = 1 (25)

It is reasonable, then, to analyze the change in this
eigenvalue when increasing the embedding dimension
to d + 1.



Conjecture 1 If S = 1
n

∑n
i=1 xix

T
i , where xi ∈ <d

and xT
i xi = 1, if x̃i ∈ <d+1 such that x̃i

T x̃i = 1 and
x̃i = [ xT

i

‖x̃i‖
ai

‖x̃i‖ ]
T then λ1(S) > λ1(S̃) where λ1 is the

largest eigenvalue.

To simplify our analysis lets augment each unit vector
xi with an added dimension having the value a such
that x̃i = [ xT

i√
(1+a2)

a√
(1+a2) ]

T is also a unit vector.

Then, the resulting scatter matrix S̃ is given by

S̃ =
1
n

n∑
i=1

[
xT

i√
(1 + a2)

a√
(1 + a2)

]T (26)

[
xi√

(1 + a2)
a√

(1 + a2)
]

This is equivalent to

S̃ =
1

(1 + a2)

[
S a

∑n
i=1 xi/n

a
∑n

i=1 xT
i /n a2

]
(27)

It can be verified [4] that because of the constraint
x̃i

T x̃i = xT
i xi = 1

tr(S̃) = tr(S) =
d∑

i=1

λi(S) =
d+1∑
i=1

λi(S̃) = 1 (28)

We can see that because of this constraint the added
dimension causes the eigenvalues to distribute mass,
and it appears that the largest eigenvalue of S̃ would
tend to decrease.

If the embedding dimension is too large the disper-
sion on the hypersphere would be very high, and any
structure in the data would be obscured. At the same
time, if the embedding dimension is too low we could
loose information about the data. It seems intuitive to
choose an embedding dimension close to the number
of clusters. As we show later, our experiments corrob-
orate this fact.

5 Experimental Results

We evaluate our algorithm on generated data and a
variety of real datasets. In all experiments we aver-
aged the results over 20 runs, and κ was initialized to
10 for every class. The mean µ was randomly chosen.
For each experiment, spectral embeddings were pre-
computed, and the algorithms were run on the com-
puted embeddings.

We compare against the soft-moVMF algorithm. No
comparison against K-Means based Spectral Cluster-
ing is necessary as it was demonstrated in [3] that
soft-moVMF always performs equal or better to K-
Means on directional data. We demonstrate that our

algorithm outperforms soft-moVMF in cases where the
data is very noisy. To this end we make plots showing
that the proposed algorithm performs equal or better
than soft-moVMF while increasing the embedding di-
mension of the data. Note that in the usual settings
of Spectral Clustering, the embedding dimension is set
to the number of clusters [8].

Ideally, a clustering algorithm would discover clusters
that are meaningful to its users. Therefore, we use
data sets in which the labels are known, namely USPS
digits, 20 Newsgroups and Yahoo20. We measure per-
formance by using Mutual Information as in [3].

5.1 Generated Data

(a) (b)

Figure 2: Clustering two-moon embeddings with soft-
moVMF and the proposed algorithm.

In this section, we study the behavior of our clustering-
EM algorithm on a simple generated example derived
from the three dimensional spectral embeddings for
the two-moons dataset (figure 1(a)). Figure 1(b) dis-
plays the embeddings as two separate bands on a
sphere and the clusterings obtained by our algorithm
for κ < 0 and soft-moVMF for κ > 0.

For κ > 0, soft-moVMF clustering tends to put ev-
ery point in the same cluster resulting in a very large
concentration parameter (κ) for one cluster and a very
small concentration for the other. Whereas for κ < 0,
the Watson clustering is perfect and ultimately con-
verges to roughly equal negative concentration param-
eters. It is evident that the proposed algorithm can
handle more topologies than the soft-moVMF algo-
rithm, where κ is constrained to be greater than zero.

5.2 Clustering USPS Digits

We use a subset of the USPS Zipcodes Dataset. The
images are scaled to mean zero and then embedded in
spectral space. The kernel sigma used was σ = 0.01.

The eigenvector embeddings are normalized to length
one such that each point lies on the d dimensional hy-
persphere. In this embedding space, we compare the
performance of soft-moVMF and the EM-Watson al-
gorithm.



(a)

(b)

(c)

Figure 3: soft-moVMF vs. EM-Watson: Mutual
Information vs. Embedding Dimension (a) USPS Dig-
its 0147 Test-set (b) USPS Digits 235689 Test-set (c)
USPS Digits 6789

(a)

(b)

Figure 4: soft-moVMF vs. EM-Watson: Mutual
Information vs. Embedding Dimension (a) 20 News-
groups (b) Yahoo20

We setup different subsets in order to test the perfor-
mance. We first start with the digits {6, 7, 8, 9}, as
they are more difficult to distinguish than the com-
monly used digits 1-4.

We also choose two subsets from the USPS test-set,
namely {0, 1, 4, 7} and {2, 3, 5, 6, 8, 9}. We use the test-
set as it is known to be more noisy than the training
set.

In figure 3(a)-(c), we can see that our algorithm per-
forms as well or better than soft-moVMF. For a higher
embedding dimension our algorithm outperforms soft-
moVMF consistently.

5.3 Clustering 20 Newsgroups

In this experiment, we cluster natural language text
from the 20 newsgroups dataset (version 20-news-
18828). We choose a subset of the topics in rec.∗
which contains autos, baseball, hockey and motorcy-
cles (4 classes). The articles were preprocessed using
the Rainbow software package [12] with the following
options: (1) skipping any header, as they contain the
correct newsgroup; (2) stemming all words; (3) remov-
ing stop words; (4) ignoring words that occur in 5 or
fewer documents. By removing documents that have
less than 5 words, we obtained 3970 document vectors
in 8014 dimensional space. The documents were nor-



malized into TFIDF representation. As the kernel for
the affinity matrix, we use the function

K(x, y) = e−
(1−yT x)

σ2 (29)

for text-data as suggested in [13]. The kernel-sigma
is set to σ = 3. We can see in figure 4(a) that our
algorithm performs equally well or better than soft-
moVMF.

5.4 Clustering Yahoo20

We obtained a subset of the Yahoo-20 data set that
contains 2340 news articles belonging to 6 different
news topics. We pre-process the data by extracting
the raw text of the news article out of the HTML.
Additionally we removed phrases that give away the
class right away (e.g. copyright statements). After
standard pre-processing steps, we then selected the top
1000 words based on information gain which resulted
in a sparse 2340×1000 document-term matrix. As the
kernel for the affinity matrix we use the equation (29)
with σ = 0.3 and then compute the embedding.

5.5 Analysis

We note that in most experiments when the embedding
dimension is close to the number of actual clusters, our
algorithm performs comparably to soft-moVMF. How-
ever, when we increase the embedding dimension the
clusters start to spread thinly on the hypersphere as
explained in section 4. This makes the clusters less
concentrated around the mean, or equivalently, the
noise in the data increases.

Our algorithm performs better in these situations for
most cases. Since Watson distribution can model
thinly spread data better than von-Mises-Fisher dis-
tribution and this added modeling capability allows it
to handle less concentrated or noisy clusters. In the
experiments we observed that our EM algorithm as-
signs negative κ parameters to classes to model the
increasing noise levels as we increase the embedding
dimension.

6 Discussion and Future Work

In this paper, we presented the mixture of Watson
distributions as a generative model for spectral em-
beddings and directional data. We demonstrated that
our algorithm tends to peform significantly better than
soft-moVMF on noisy thinly spread clusters. We also
presented an explanation for the choice of embedding
dimension. This discussion implied that, as we in-
crease the embedding dimension, the concentration
around the means (µ) decrease, and the unit vectors

tend to spread out on the hypersphere. In the future,
we intend to extend our model to very high dimen-
sional problems by speeding up the M-step for the µ
parameter. We also hope to analyze the convergence
of the proposed EM algorithm in the light of the ap-
proximation used. There are other directional models
such as the Bingham and the Kent distribution, which
could be explored in lieu of their enhanced modeling
capacity. However, the number of parameters to be
estimated in these models is quite large and would re-
quire significantly more training data.
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